https://www.selleckchem.com/ Among the four proteolytic systems in the cell, autophagy and the ubiquitin-proteasome system (UPS) are the main proteolytic events that allow for the removal of cell debris and proteins to maintain cellular homeostasis. Previous studies have revealed that these systems perform their functions independently of each other. However, recent studies indicate the existence of regulatory interactions between these proteolytic systems via ubiquitinated tags and a reciprocal regulation mechanism with several crosstalk points. UPS plays an important role in the elimination of short-lived/soluble misfolded proteins, whereas autophagy eliminates defective organelles and persistent insoluble protein aggregates. Both of these systems seem to act independently; however, disruption of one pathway affects the activity of the other pathway and contributes to different pathological conditions. This review summarizes the recent findings on direct and indirect dependencies of autophagy and UPS and their execution at the molecular level along with the important drug targets in skeletal muscle atrophy.It gives me great pleasure to have the opportunity to introduce myself to the readers of Biophysical Reviews as part of the 'meet the editors' series. What follows is a mini-autobiography of my life as it relates to my scientific career and research.Mild, blast-induced traumatic brain injury (mbTBI) is a common combat brain injury characterized by typically normal neuroimaging findings, with unpredictable future cognitive recovery. Traditional methods of electroencephalography (EEG) analysis (e.g., spectral analysis) have not been successful in detecting the degree of cognitive and functional impairment in mbTBI. We therefore collected resting state EEG (5 minutes, 64 leads) from twelve patients with a history of mbTBI, along with repeat neuropsychological testing (D-KEFS Tower test) to compare two new methods for analyzing EEG (multifractal detrended fluctuatio