viding physicians formative and evaluative feedback of practice patterns to ensure that ADs are honored when appropriate.Luminescent copper(I) halide complexes with bi- and tridentate rigid ligands have gained wide research interests. In this paper, six tetracoordinate dinuclear copper(I) halide complexes, Cu2X2(ppda)2 [ppda = 2-[2-(dimethylamino)phenyl(phenyl)phosphino]-N,N-dimethylaniline, X = I (1), Br (2), Cl (3)] and Cu2X2(pfda)2 [pfda = 2-[2-(dimethylamino)-4-(trifluoromethyl)phenyl(phenyl)phosphino]-N,N-dimethyl-5-trifluoromethylaniline, X = I (4), Br (5), Cl (6)], were successfully prepared and systematically characterized on their structures and photophysical properties. Complexes 1-5 have a centrosymmetric form with a planar Cu2X2 unit, and complex 6 has a mirror symmetry form with a butterfly-shaped Cu2X2. Solid complexes 1, 4, and 5 emit delayed fluorescence at room temperature, intense blue to greenish yellow (λmax = 443-570 nm) light, and their peak wavelengths are located at 443-570 nm with microsecond lifetimes (τ = 0.4-19.2 μs, ΦPL = 0.05-0.48). Complexes 2, 3, and 6 show prompt fluorescence, very weak yellowish green to yellow (λmax = 534-595 nm) emission with peak wavelengths at 534-595 nm, and lifetimes in nanoseconds (τ = 4.4-9.3 ns, ΦPL less then 0.0001). (Metal + halide) to ligand and intraligand charge transitions are the main origin of the emission of the complexes. Solution-processed, complex-4-based nondoped and doped devices emit yellow green light with CIE coordinated at (0.41, 0.51), a maximum EQE up to 0.17%, and luminance reaching 75.52 cd/m2.Phosphorylated metabolites are omnipresent in cells, but their analytical characterization faces several technical hurdles. Here, we detail an improved NMR workflow aimed at assigning the high-resolution subspectrum of the phospho-metabolites in a complex mixture. Combining a pure absorption J-resolved spectrum (Pell, A. J.; J. Magn. Reson. 2007, 189 (2), 293-299) with alternate on- and off-switching of the 31P coupling interaction during the t1 evolution with a pure in-phase (PIP) HSQMBC experiment (Castañar, L.; Angew. Chem., Int. Ed. 2014, 53 (32), 8379-8382) without or with total correlation spectroscopy (TOCSY) transfer during the insensitive nuclei enhancement by polarization transfer (INEPT) gives access to selective identification of the individual subspectra of the phosphorylated metabolites. Returning to the initial J-res spectra, we can extract with optimal resolution the full trace for the individual phospho-metabolites, which can then be transposed on the high-resolution quantitative one dimensional spectrum.Converting a nonwetting surface to a highly wetting one, aided by ultraviolet radiation, is well explored. https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html Here, in this work, we show just the reverse behavior of a copper-copper oxide nanocomposite surface where ultraviolet radiation turned the superhydrophilic surface to a superhydrophobic one. This observation is explained both experimentally and theoretically using first-principles density functional theory-based calculations considering the metal-oxygen (Cu-O) bond breaking and related change in surface chemistry. This observation has further been corroborated with electron irradiation on the same nanocomposite material. To the best of our knowledge, for the first time, we show that the radiation-induced breaking of the copper-oxygen bond makes the nanostructure surface energetically unfavorable for water adsorption.A boronic acid catalyzed one-pot tandem reduction of quinolines to tetrahydroquinolines followed by reductive alkylation by the aldehyde has been demonstrated. This step-economcial synthesis of N-alkyl tetrahydroquinolines has been achieved directly from readily available quinolines, aldehydes, and Hantzsch ester under mild reaction conditions. The mechanistic study demonstrates the unique behavior of organoboron catalysts as both Lewis acids and hydrogen-bond donors.Magnetic nanoparticles have been widely used for the separation of biomolecules for biological applications due to the mild and efficient separation process. In previous studies, core-shell magnetic nanoparticles (NPs) were designed for DNA extraction without much sequence specificity. In this work, to achieve highly selective DNA extraction, we designed a core-shell magnetic structure by coating polydopamine (PDA) on Fe3O4 NPs. Without divalent metal ions, PDA does not adsorb DNA at neutral pH. The Fe3O4@PDA NPs were then functionalized with spherical nucleic acids (SNA) to provide a high density of probe DNA. Fe3O4@PDA@SNA was also compared with when a linear SH-DNA was covalently attached to the NPs surface, showing a higher density of the probe SNA than SH-DNA can be loaded on the NPs in a remarkably shorter time. Nonspecific DNA extraction was thoroughly inhibited by both probes. DNA extraction by the Fe3O4@PDA@SNA was more effective as well as 5-fold faster than by the Fe3O4@PDA@SH-DNA, probably due to the favorable standing conformation of DNA strands in SNA. Moreover, extraction by Fe3O4@PDA@SNA showed high robustness in fetal bovine serum, and the same design can be used for selective detection of DNA. Finally, the method was also demonstrated on silica NPs and WS2 nanosheets for coating with PDA and SNA. Altogether, our findings revealed an interesting and general surface modification strategy using PDA@SNA conjugates for sequence-specific DNA extraction.Platinum(IV) complexes of orotic acid selectively target liver cancer cells displaying enhanced activity and higher uptake in Hep G2. The comparatively higher expression of Organic Anion Transporter 2 (OAT2) in Hep G2 and decrease in toxicity in the presence of OAT2 inhibitor suggest its involvement in the uptake of the complexes. They are resistant to sequestration by the copper transporter ATP7B, unlike cisplatin and oxaliplatin.The use of mass spectrometry to investigate proteins is now well established and provides invaluable information for both soluble and membrane protein assemblies. Maintaining transient noncovalent interactions under physiological conditions, however, remains challenging. Here, using nanoscale electrospray ionization emitters, we establish conditions that enable mass spectrometry of two G protein-coupled receptors (GPCR) from buffers containing high concentrations of sodium ions. For the Class A GPCR, the adenosine 2A receptor, we observe ligand-induced changes to sodium binding of the receptor at the level of individual sodium ions. We find that antagonists promote sodium binding while agonists attenuate sodium binding. These findings are in line with high-resolution X-ray crystallography wherein only inactive conformations retain sodium ions in allosteric binding pockets. For the glucagon receptor (a Class B GPCR) we observed enhanced ligand binding in electrospray buffers containing high concentrations of sodium, as opposed to ammonium acetate buffers.