https://www.selleckchem.com/products/sodium-ascorbate.html In extant vertebrates, natural motifs such as coat markings, spongy bone structures, neuronal arborescence or collective swarms correspond to diverse pattern types, from fractals to periodic stripes or tessellations, and so on. In this subphylum, evolution produced an apparent paradox a given pattern may vary tremendously in its extent, periodicity or regularity, but follows general geometrical trends and is produced with meticulous precision. In this review, we discuss the role of self-organization, a patterning strategy in which spontaneous order arises through local interactions without gradient formation, in shaping both natural pattern differences and common themes. Mathematical models evidenced a wide high adaptability of self-organizing dynamics, long-advocating for their contribution to natural pattern diversity. Recent empirical and theoretical approaches taking into account network topologies and natural variation also replaced outcomes of self-organization in more constrained biological contexts, shedding light on mechanisms ensuring pattern fidelity.Salinity stress has significant deleterious effects on agricultural lands and plant yields. Plants undergo a series of physiological and molecular changes to reduce salt-induced damage. However, these mechanisms remain insufficient. The inoculation of plant growth promoting bacteria to improve plant health under stress conditions offers promise. Bacillus velezensis FMH2 has been shown to protect tomato fruits against black mold disease and to improve seed tolerance to abiotic stresses. During this study, the major physiological and metabolic changes connected with FMH2 mitigation of abiotic stress tolerance in tomato plants were explored. In presence of different salt levels, FMH2 showed a high potentiality to colonize internal plant tissues and to produce several plant growth promoting metabolites such as siderophores, indole acetic acid, and hydroly