https://www.selleckchem.com/products/AZD7762.html Germ cell tumor of the testis (TGCT) is a remarkably curable solid tumor even when it is widely metastatic and patently heterogeneous. It provides invaluable clues about the origin and nature of metastasis and heterogeneity, cancer dormancy and late recurrence, drug sensitivity and resistance, tumor immunity, and spontaneous remission that would enable us to enhance the cure and improve the care of patients with other currently intractable solid tumors. After all, germ cells are primeval stem cells and TGCT are a perfect stem cell tumor for us to investigate a stem cell versus genetic origin of cancer. In many respects, TGCT is a prototype stem cell tumor that will enable us to elucidate the role of differentiation versus dedifferentiation in the evolution of a complex mixed tumor. It will help us decipher relevance of the genome versus the epi-genome in a progenitor cancer stem cell versus a progeny differentiated cancer cell. Importantly, clarification of a cellular context versus the genetic makeup in cancer has immense clinical implications. We postulate a unified theory of cancer derived from seminal TGCT research to improve personalized cancer care. Contrary to current norms and conventional wisdom, we propose that when it concerns a complex rather than simple cancer and a mixed rather than pure tumor (which is practically all solid tumors) multimodal therapy trumps targeted therapy and integrated medicine overrides precision medicine.The expression "metabolic reprogramming" has been encountered more and more in the literature since the mid-1990s. It seems to encompass several notions depending on the author, but the lack of a clear definition allows it to be used as a "catch-all" expression. Our first intention is to point out the inconsistencies in the use of the reprogramming terminology for cancer metabolism. The second is to address the over-focus of the role of mutations in metabolic adaptation. With the