https://www.selleckchem.com/products/reversine.html Medullary thyroid cancer (MTC) accounts for ~4% of all thyroid malignancies. MTC derives from the neural crest and secretes calcitonin (CTN) and carcinoembryonic antigen (CEA). Unlike differentiated thyroid cancer, MTC does not uptake iodine and I-131 RAI (radioactive iodine) treatment is ineffective. Patients with metastatic disease are candidates for FDA-approved agents with either vandetanib or cabozantinib; however, adverse effects limit their use. There are ongoing trials exploring the role of less toxic immunotherapies in patients with MTC. We present a 61-year-old male with the diagnosis of MTC and persistent local recurrence despite multiple surgeries. He was started on sunitinib, but ultimately its use was limited by toxicity. He then presented to the National Cancer Institute (NCI) and was enrolled on a clinical trial with heat-killed yeast-CEA vaccine (NCT01856920) and his calcitonin doubling time improved in 3 months. He then came off vaccine for elective surgery. After surgery, his calcitonin was rising and he enrolled on a phase I trial of avelumab, a programmed death-ligand 1 (PD-L1) inhibitor (NCT01772004). Thereafter, his calcitonin decreased > 40% on 5 consecutive evaluations. His tumor was subsequently found to express PD-L1. CEA-specific T cells were increased following vaccination, and a number of potential immune-enhancing changes were noted in the peripheral immunome over the course of sequential immunotherapy treatment. Although calcitonin declines do not always directly correlate with clinical responses, this response is noteworthy and highlights the potential for immunotherapy or sequential immunotherapy in metastatic or unresectable MTC.Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their