https://www.selleckchem.com/CDK.html ear AUC 0.9399, 5-year AUC 0.9266) displayed higher predictive accuracy than that of the other models. Subsequently, 105 DEPCGs were identified. The GSEA revealed 4 significant pathways. Analysis with CIBERSORTx demonstrated that monocytes, macrophages M1, activated dendritic cells, and resting mast cells had significant infiltration differences between groups. This study constructed a genomic-clinicopathologic nomogram, which might present a novel and efficient method for treating patients with WT. This study constructed a genomic-clinicopathologic nomogram, which might present a novel and efficient method for treating patients with WT. Abdominal-type Henoch-Schonlein purpura (HSP) is a common refractory disease in children. Currently, no specific diagnostic biomarker is available for HSP. Children with abdominal type HSP were first diagnosed with three syndromes using Chinese traditional medicine. The urinary proteomes among the three syndromes of patients with abdominal type HSP and healthy controls were compared using two label-free proteomics quantifications, including data-dependent acquisition and data-independent acquisition. For the comparison between patients with abdominal type HSP and healthy children, a total of 75 differential urinary proteins were identified by determining the overlap of the two experiments. The ingenuity pathway analysis (IPA) analysis showed that these differential proteins were correlated with the pathogenesis of abdominal type HSP. Of these, 37 proteins were distributed in 13 solid tissues as tissue-enriched proteins. Monitoring changes in these proteins might help us detect uncommon clinical manifestations of HSP. Patients with abdominal type HSP can be further distinguished into three syndromes based on the urine proteome. Finally, a panel of six urinary proteins (P25774, P09417, Q7Z5L0, P60900, P14550 and P09668) was constructed for both the diagnosis and phenotyping of abdominal type HSP. U