https://www.selleckchem.com/products/bix-01294.html Diffusion of ionic components in electrolytes not only eliminates the gradients of ionic concentrations but also alters the local dielectric environment, and the coupling effect between kinetic dielectric decrement and ionic concentration gradient on the diffusion dynamics is not well understood. Herein, taking the charging process in electrical double layer systems as a case study, we conduct a multiscale investigation of ion diffusions in aqueous electrolytes by combining the dynamic density functional theory and an ion-concentration-dependent dielectric constant model. By properly considering the time evolutions of local dielectric constant coupled with ion density, we report an interesting phenomenon on the suppression of surface charge density that is not captured by conventional models. In addition, we show that the usage of aqueous electrolyte with small dielectric decrement coefficients promotes the capacitance, in quantitative agreement with experimental measurements.Advancements that occurred during the last years in the diagnosis of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis infection, have prompted increased survival rates of patients. However, limitations related to the inefficiency of an early detection still remain; some techniques and laboratory methods do not have enough specificity and most instruments are expensive and require handling by trained staff. In order to contribute to a prompt and effective diagnosis of tuberculosis, we report the development of a portable, user-friendly, and low-cost biosensor device for its early detection. By using a label-free surface plasmon resonance (SPR) biosensor, we have established a direct immunoassay for the direct detection and quantification of the heat shock protein X (HspX) of Mtb, a well-established biomarker of this pathogen, directly in pretreated sputum samples. The method relies on highly specific monoclonal antibodies t