https://www.selleckchem.com/GSK-3.html A novel SS18-POU5F1 fusion gene was recently reported in soft tissue sarcoma occurring in three adolescent and young adult patients. Herein, we firstly reported the treatment response of SS18-POU5F1 sarcoma to immune checkpoint inhibitor, angiogenesis inhibitor, chemotherapy and radiotherapy. Our patient demonstrated no response to various systemic therapies including immune checkpoint inhibitor, angiogenesis inhibitor and chemotherapy. However, we noted that the SS18-POU5F1 sarcoma had a quick, robust but transient clinical response to radiotherapy. Further studies are needed to elucidate the mechanism underlying the different tumor response to radiotherapy and systemic therapy in this kind of tumor.Transcription factors (TFs) are the mainstay of cancer and have a widely reported influence on the initiation, progression, invasion, metastasis, and therapy resistance of cancer. However, the prognostic values of TFs in breast cancer (BC) remained unknown. In this study, comprehensive bioinformatics analysis was conducted with data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We constructed the co-expression network of all TFs and linked it to clinicopathological data. Differentially expressed TFs were obtained from BC RNA-seq data in TCGA database. The prognostic TFs used to construct the risk model for progression free interval (PFI) were identified by Cox regression analyses, and the PFI was analyzed by the Kaplan-Meier method. A receiver operating characteristic (ROC) curve and clinical variables stratification analysis were used to detect the accuracy of the prognostic model. Additionally, we performed functional enrichment analysis by analyzing the differential expressed gene between high-risk and low-risk group. A total of nine co-expression modules were identified. The prognostic index based on 4 TFs (NR3C2, ZNF652, EGR3, and ARNT2) indicated that the PFI was significantly shorter in the