https://www.selleckchem.com/products/ITF2357(Givinostat).html e pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.Cancer stem cells (CSCs) play an important role in cancer recurrence and metastasis. It is suggested that the CSC properties in heterogeneous cancer cells can be induced by ionizing radiation (IR). This study investigated the role of DLX2 in the radioresistance and CSC properties induced by IR in NSCLC cancer cells. Here, A549 cells were exposed to fractionated irradiation at a cumulative dose of 52 Gy (4 Gy × 13 times) for a generation of radioresistant cells. After fractionated irradiation, surviving A549 cells exhibited resistance to IR and enhanced expression of various cancer stem cell markers. They also showed upregulation of mesenchymal molecular markers and downregulation of epithelial molecular markers, correlating with an increase in the migration and invasion. Fractionated irradiation triggered the secretion of TGF-β1 and DLX2 expression. Interestingly, the increased DLX2 following fractionated irradiation seemed to induce the expression of the gene for the EGFR-ligand betacellulin via Smad2/3 signaling. To contrast, DLX2 knockdown dramatically decreased the expression of CSC markers, migration, and proliferation. Moreover, A549 cells expressing DLX2 shRNA formed tumors with a significantly smaller volume compared to those expressing control shDNA in a mouse xenograft assay. These results suggest that DLX2 overexpression in surviving NSCLC cancer cells after frac