https://www.selleckchem.com/products/cep-18770.html Hg(II) has been identified to be one of the extremely toxic heavy metals because of its hazardous effects and this fact that it is even more hazardous to animals than other pollutants such as Ag, Au, Cd, Ni, Pb, Co, Cu, and Zn. Accordingly, for the first time, tetrasulfide-functionalized fibrous silica KCC-1 (TS-KCC-1) spheres were synthesized by a facile, conventional ultrasonic-assisted, sol-gel-hydrothermal preparation approach to adsorb Hg(II) from aqueous solution. Tetrasulfide groups (-S-S-S-S-) were chosen as binding sites due to the strong and effective interaction of mercury ions (Hg(II)) with sulfur atoms. Hg(II) uptake onto TS-KCC-1 in a batch system has been carried out. Isotherm and kinetic results showed a very agreed agreement with Langmuir and pseudo-first-order models, respectively, with a Langmuir maximum uptake capacity of 132.55 mg g-1 (volume of the solution = 20.0 mL; adsorbent dose = 5.0 mg; pH = 5.0; temperature 198 K; contact time = 40 min; shaking speed = 180 rpm). TS-KCC-1was shown to be a promising functional nanoporous material for the uptake of Hg(II) cations from aqueous media. To the best of our knowledge, there has been no report on the uptake of toxic Hg(II) cations by tetrasulfide-functionalized KCC-1 prepared by a conventional ultrasonic-assisted sol-gel-hydrothermal synthesis method.We report that entrapping glucose oxidase (GOx) within metallic gold, expands its activity to become an oxidase for monosaccharides that do not have a natural enzyme with that activity-fructose and xylose-and that this entrapment also removes the enantioselectivity, rendering this enzyme capable of oxidizing the "wrong" L-enantiomer of glucose. These observations suggest that in this biomaterial adsorptive interactions of the outer regions of the protein with the gold cage, pull apart and widen the tunnel between the two monomeric units of GOx, to a degree that its stereoselectivity is compromised; t