These data bring attention to the possibility of unintended target cell depletion with some commonly used anti-mouse PD-1 clones, and should provide a valuable resource for the design and interpretation of anti-PD-1 studies in mice.Plastid metabolism is critical in both photoautotrophic and heterotrophic plant cells. In chloroplasts, fructose-1,6-bisphosphate aldolase (FBA) catalyses the formation of both fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate within the Calvin-Benson cycle. Three Arabidopsis genes, AtFBA1-AtFBA3, encode plastidial isoforms of FBA, but the contribution of each isoform is unknown. Phylogenetic analysis indicates that FBA1 and FBA2 derive from a recently duplicated gene, while FBA3 is a more ancient paralog. fba1 mutants are phenotypically indistinguishable from the wild type, while both fba2 and fba3 have reduced growth. We show that FBA2 is the major isoform in leaves, contributing most of the measurable activity. Partial redundancy with FBA1 allows both single mutants to survive, but combining both mutations is lethal, indicating a block of photoautotrophy. In contrast, FBA3 is expressed predominantly in heterotrophic tissues, especially the leaf and root vasculature, but not in the leaf mesophyll. We show that the loss of FBA3 affects plastidial glycolytic metabolism of the root, potentially limiting the biosynthesis of essential compounds such as amino acids. However, grafting experiments suggest that fba3 is dysfunctional in leaf phloem transport, and we suggest that a block in photoassimilate export from leaves causes the buildup of high carbohydrate concentrations and retarded growth.Recruitment of the mRNA capping enzyme (CE/RNGTT) to the site of transcription is essential for the formation of the 5' mRNA cap, which in turn ensures efficient transcription, splicing, polyadenylation, nuclear export and translation of mRNA in eukaryotic cells. The CE GTase is recruited and activated by the Serine-5 phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. Through the use of molecular dynamics simulations and enhanced sampling techniques, we provide a systematic and detailed characterization of the human CE-CTD interface, describing the effect of the CTD phosphorylation state, length and orientation on this interaction. Our computational analyses identify novel CTD interaction sites on the human CE GTase surface and quantify their relative contributions to CTD binding. We also identify, for the first time, allosteric connections between the CE GTase active site and the CTD binding sites, allowing us to propose a mechanism for allosteric activation. Through binding and activity assays we validate the novel CTD binding sites and show that the CDS2 site is essential for CE GTase activity stimulation. Comparison of the novel sites with cocrystal structures of the CE-CTD complex in different eukaryotic taxa reveals that this interface is considerably more conserved than previous structures have indicated.The genetic code of mammalian cells can be expanded to allow the incorporation of non-canonical amino acids (ncAAs) by suppressing in-frame amber stop codons (UAG) with an orthogonal pyrrolysyl-tRNA synthetase (PylRS)/tRNAPylCUA (PylT) pair. However, the feasibility of this approach is substantially hampered by unpredictable variations in incorporation efficiencies at different stop codon positions within target proteins. Here, we apply a proteomics-based approach to quantify ncAA incorporation rates at hundreds of endogenous amber stop codons in mammalian cells. With these data, we compute iPASS (Identification of Permissive Amber Sites for Suppression; available at www.bultmannlab.eu/tools/iPASS), a linear regression model to predict relative ncAA incorporation efficiencies depending on the surrounding sequence context. To verify iPASS, we develop a dual-fluorescence reporter for high-throughput flow-cytometry analysis that reproducibly yields context-specific ncAA incorporation efficiencies. We show that nucleotides up- and downstream of UAG synergistically influence ncAA incorporation efficiency independent of cell line and ncAA identity. Additionally, we demonstrate iPASS-guided optimization of ncAA incorporation rates by synonymous exchange of codons flanking the amber stop codon. This combination of in silico analysis followed by validation in living mammalian cells substantially simplifies identification as well as adaptation of sites within a target protein to confer high ncAA incorporation rates.Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. https://www.selleckchem.com/products/Carboplatin.html We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.Osteoporosis is a global health issue among the aging population. The effect of the acid or base interventions on bone health remains controversial. This study performed a systematic review and meta-analysis to investigate effects of acidic diets and alkaline supplements on bone health simultaneously. We conducted a comprehensive literature search in 5 available databases and 1 registered clinical trial system to identify randomized controlled trials (RCTs) that assessed effects of the acid-base intervention on bone health. Depending on heterogeneity across studies, the pooled effects were calculated by fixed-effects or random-effects models. The present study included 13 acidic diet intervention studies and 13 alkaline supplement studies for final quantitative assessments. The meta-analysis showed that acidic diets significantly increased net acid excretion [NAE; standardized mean difference (SMD) = 2.99; P = 0.003] and urinary calcium excretion (SMD = 0.47, P less then 0.00001) but had no significant effect on bone turnover markers and bone mineral density (BMD).