https://www.selleckchem.com/products/sivelestat-sodium.html Finally, simulations of an illustrated nonlinear interconnected plant are provided to validate the present designs.This article investigates the stability and synchronization of nonautonomous reaction-diffusion neural networks with general time-varying delays. Compared with the existing works concerning reaction-diffusion neural networks, the main innovation of this article is that the network coefficients are time-varying, and the delays are general (which means that fewer constraints are posed on delays; for example, the commonly used conditions of differentiability and boundedness are no longer needed). By Green's formula and some analytical techniques, some easily checkable criteria on stability and synchronization for the underlying neural networks are established. These obtained results not only improve some existing ones but also contain some novel results that have not yet been reported. The effectiveness and superiorities of the established criteria are verified by three numerical examples.Network controllability robustness (CR) reflects how well a networked system can maintain its controllability against destructive attacks. Its measure is quantified by a sequence of values that record the remaining controllability of the network after a sequence of node-removal or edge-removal attacks. Traditionally, the CR is determined by attack simulations, which is computationally time-consuming or even infeasible. In this article, an improved method for predicting the network CR is developed based on machine learning using a group of convolutional neural networks (CNNs). In this scheme, a number of training data generated by simulations are used to train the group of CNNs for classification and prediction, respectively. Extensive experimental studies are carried out, which demonstrate that 1) the proposed method predicts more precisely than the classical single-CNN predictor; 2) the proposed CNN-based predic