https://www.selleckchem.com/products/v-9302.html In the second stage, polypropylene composites with nanometric cellulose were obtained by extrusion and injection. It was found by means of X-ray diffraction, hot stage optical microscopy and differential scanning calorimetry that nanocellulose had a significant effect on the supermolecular structure, nucleation activity and the course of phase transitions of the obtained polymer nanocomposites. Moreover, the obtained nanocomposites are characterized by very good strength properties. This paper describes for the first time that the obtained cellulose nanofillers with defined parameters can be used for the production of polymer composites with a strictly defined polymorphic structure, which in turn may influence future decision making about obtaining materials with controllable properties, e.g., high flexibility, enabling the thermoforming process of packaging.Celiac disease is increasing all over the world. In this context, most recent research in this area is addressing and attempting to improve the nutritional value and sensory characteristics of gluten-free (GF) food products and to enhance their technological properties. Here, amaranth flour was studied as a potential healthy ingredient for the development of an innovative GF flat bread. Starting from two different basic formulations (rice flourcorn starch and rice flourtapioca starch, 5050), the impact of partially replacing rice flour (6%) and starch (6%) with amaranth on the nutritional characteristics, polyphenol composition, textural, and sensory properties of the resulting GF flat breads was explored. The substitution with amaranth led to detrimental effects on the doughs' viscometric properties, especially in the case of tapioca starch, but significantly improved the doughs' textural properties. All the amaranth-enriched flat breads showed a better color and a significant increase in all polyphenols fractions but lower antioxidant activity. During bread stor