https://www.selleckchem.com/products/BIRB-796-(Doramapimod).html Ex vivo and in vivo tests show that the novel, steerable and teleoperated OCT device enhances dexterity, allowing for inspection of the surgical field without the need for changing the position of the main endoscope. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Tumor-free surgical margins are critical in breast-conserving surgery. In up to 38% of the cases, however, patients undergo a second surgery since malignant cells are found at the margins of the excised resection specimen. Thus, advanced imaging tools are needed to ensure clear margins at the time of surgery. The objective of this study was to evaluate a random forest classifier that makes use of parameters derived from point-scanning label-free fluorescence lifetime imaging (FLIm) measurements of breast specimens as a means to diagnose tumor at the resection margins and to enable an intuitive visualization of a probabilistic classifier on tissue specimen. FLIm data from fresh lumpectomy and mastectomy specimens from 18 patients were used in this study. The supervised training was based on a previously developed registration technique between autofluorescence imaging data and cross-sectional histology slides. A pathologist's histology annotations provide the ground truth to distinguish between adipose, fibrous, and tumor tissue. Current results demonstrate the ability of this approach to classify the tumor with 89% sensitivity and 93% specificity and to rapidly (∼ 20 frames per second) overlay the probabilistic classifier overlaid on excised breast specimens using an intuitive color scheme. Furthermore, we show an iterative imaging refinement that allows surgeons to switch between rapid scans with a customized, low spatial resolution to quickly cover the specimen and slower scans with enhanced resolution (400 μm per point measurement) in suspicious regions where more details are required. In summa