In addition, this bio-stabilizer itself would remain stable in the upper gastrointestinal track and serve as a prebiotic for gut microbiota. We anticipate GGM to complement or even replace many of the conventional carriers of bioactive components in future health care products and functional foods.Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aβ accumulation and Aβ-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aβ accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aβ1-42 (2 μM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aβ and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.The interest in wound healing characteristics of bioactive constituents and therapeutic agents, especially natural compounds, is increasing because of their therapeutic properties, cost-effectiveness, and few adverse effects. Lately, nanocarriers as a drug delivery system have been actively investigated and applied in medical and therapeutic applications. In recent decades, researchers have investigated the incorporation of natural or synthetic substances into novel bioactive electrospun nanofibrous architectures produced by the electrospinning method for skin substitutes. Therefore, the development of nanotechnology in the area of dressings that could provide higher performance and a synergistic effect for wound healing is needed. Natural compounds with antimicrobial, antibacterial, and anti-inflammatory activity in combination with nanostructured fibers represent a future approach due to the increased wound healing process and regeneration of the lost tissue. This paper presents different approaches in producing electrospun nanofibers, highlighting the electrospinning process used in fabricating innovative wound dressings that are able to release natural and/or synthetic substances in a controlled way, thus enhancing the healing process.The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. https://www.selleckchem.com/products/LBH-589.html Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applicati concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization.Background Compulsive eating can be promoted by intermittent access to palatable food and is often accompanied by cognitive deficits and reduction in hippocampal plasticity. Here, we investigated the effects of intermittent access to palatable food on hippocampal function and neurogenesis. Methods Male Wistar rats were either fed chow for 7 days/week (Chow/Chow group), or fed chow intermittently for 5 days/week followed by a palatable diet for 2 days/week (Chow/Palatable group). Hippocampal function and neurogenesis were assessed either during withdrawal or following renewed access to palatable food. Furthermore, the ability of the uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist memantine to prevent the diet-induced memory deficits and block the maladaptive feeding was tested. Results Palatable food withdrawn Chow/Palatable rats showed both a weakened ability for contextual spatial processing and a bias in their preference for a "novel cue" over a "novel place," compared to controls. They also showed reduced expression of immature neurons in the dentate gyrus of the hippocampus as well as a withdrawal-dependent decrease of proliferating cells. Memantine treatment was able both to reverse the memory deficits and to reduce the excessive intake of palatable diet and the withdrawal-induced hypophagia in food cycling rats. Conclusions In summary, our results provide evidence that withdrawal from highly palatable food produces NMDAR-dependent deficits in hippocampal function and a reduction in hippocampal neurogenesis.