Such pharmacokinetic alterations might presumably result from the pathological state of type 1 diabetes. The current study may provide scientific evidence and inspiring insights for clinical application of aucubin for the treatment of diabetes. Bremelanotide (Vyleesi®), a cyclic heptapeptide, was recently approved for the subcutaneous treatment of premenopausal hypoactive sexual desire disorder. To foster the development of alternative routes of administration, we aimed at determining the oral plasma pharmacokinetics of bremelanotide in beagle dogs. Therefore, we established a UHPLC-MS/MS assay with an LLOQ of 10 pg/mL (9.8 pM) using 100 μL of plasma and validated it according to the guidelines of the US Food and Drug Administration and the European Medicines Agency. Bremelanotide was isolated from plasma by protein precipitation and quantification was performed with positive heated ESI MS/MS in the SRM mode. The calibrated concentration range of 10-10,000 pg/mL was linear showing correlation coefficients > 0.99. In the calibrated range, interday and intraday accuracy ranged from 88.9-100.0 % with corresponding precision less then 8 %. Accuracy at the LLOQ ranged from 93.6-100.8 % with corresponding precision less then 11 %. Because of the validity of a dilution QC that showed accurate quantification of 10-fold diluted plasma samples (accuracy 99.4 %, precision less then 6 %), the assay is suitable for bremelanotide quantification in its effective concentration range up to 100,000 pg/mL. The ultra-sensitive assay was applied to the quantification of bremelanotide plasma concentrations after oral administration to beagle dogs, which indicated minimal oral absorption. Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. https://www.selleckchem.com/products/mrtx849.html Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant. Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling under drought stress, while the regulatory metabolism associated with abscisic acid (ABA) is still limited. Two cultivars, LJ196 (drought-tolerant) and XD18 (drought-prone), were pot-grown under well-watered (WW) and drought-stressed (DS) conditions. Concentrations of WSC components and ABA, and fructan metabolizing enzymes and genes were investigated in peduncle after anthesis. When compared with those under the WW, LJ196 remained higher grain yield and grain-filling rate than XD18 under the DS. During the early period of grain filling (0-14 DAA), DS increased concentrations of total WSC and its components, but thereafter substantially reduced them. The gene expression levels and enzymatic activities of fructan 1-exohydrolases (1-FEH) and fructan 6-exohydrolases (6-FEH) showed similar trends, whereas those of fructan fructan 1-fructosyltransferase (1-FFT), and sucrose fructan 6-fructosyltransferase (6-SFT) were depressed and declined over the period of examination. LJ196 still showed higher levels of ABA and fructan metabolizing. The ABA concentration under the DS was positively and significantly correlated with total WSC and fructan concentration, and expression levels of these enzymes and genes as well, with more prominently with those of 6-FEH. Presumably, ABA could enhance fructan hydrolysis by strongly up-regulating the gene expression and enzymatic activity of 6-FEH to accelerate WSC remobilization. However, stem WSC induced by DS could be not fully remobilized to grains, due to its weaker correlation with grain-filling rate and finally indicating lower grain yield. The findings would provide useful information for wheat production under water-deficit environments. Peppermint (Mentha × piperita L.) is a flavoring additive used worldwide, and Trichoderma species are beneficial fungi that can stimulate growth and disease resistance of these plants. Here the growth conditions and metabolic processes of essential oil (EO) biosynthesis in response to inoculation with Trichoderma viride Tv-1511 were investigated. The results showed that T. viride Tv-1511 was able to colonize roots of peppermint to promote its growth and photosynthetic activity and induce higher levels of glandular trichomes and elevated EO yield and composition. GC-MS analysis showed that T. viride Tv-1511-inoculated peppermint produced higher concentrations of menthone, menthol, and pulegone and lower concentrations of menthofuran than un-inoculated seedlings, and qRT-PCR showed that T. viride Tv-1511 inoculation induced upregulation of Pr (pulegone reductase encoding gene) and Mr (menthone reductase encoding gene), whereas it led to the downregulation of Mfs (menthofuran synthase encoding gene). Furthermore, a mitogen-activated protein kinase (MAPK) in peppermint, which was determined to be an analog of Arabidopsis MPK6 protein, was found to be responsible for the modulation of EO metabolism at the transcriptional level and for enzymatic activation in the T.