https://www.selleckchem.com/products/piperacillin.html To reveal the factors governing the chirality transfer from a chiral unimolecule to a supramolecular assembly, we constructed a series of [2]pseudorotaxanes through the intermolecular noncovalent interaction of a pair of chiral binaphthalene crown ethers with achiral secondary ammonium salts with different chromophores, and found that the binaphthalene groups can induce new circular dichroism (CD) signals only in the [2]pseudorotaxane structures between the host crown ethers and the guest molecule with the anthryl group. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations show that the generation of the new CD signal is mainly due to the intermolecular chiral induction between the anthryl group in the guest and the naphthalene groups in the host.A facile and efficient method for the synthesis of novel 2-substituted 4-tosyl-4,5-dihydrooxazolo[5,4-c]isoquinolines from 4-diazoisoquinolin-3-ones and nitriles is reported. The reaction proceeded through a TfOH-promoted formal [3 + 2] cycloaddition and the products could be conveniently converted to 2-aryloxazolo[5,4-c]isoquinolines and the subsequent 2-(oxazolo[5,4-c]isoquinolin-2-yl)phenol which emitted bright green light in dilute dichloromethane solution and in solid form as well. Simple operation, metal-free and mild reaction conditions, short reaction time and broad substrate scope are the prominent features of this methodology.In the field of gas sensor studies, most researchers are focusing on improving the response of the sensors to detect a low concentration of gas. However, factors that make a large response, such as abundant or strong adsorption sites, also work as a source of noise, resulting in a trade-off between response and noise. Thus, the response alone cannot fully evaluate the performance of sensors, and the signal-to-noise-ratio (SNR) should additionally be considered to design gas sensors with optima