https://www.selleckchem.com/products/resiquimod.html Chlorella vulgaris is used for food and feed applications due to its nutraceutical, antioxidant and anticancer properties. An airlift photobioreactor comprising transparent draft tube was used for C. vulgaris cultivation. The effect of reactor parameters like hydrodynamics (0.3-1.5 vvm), light intensity (85-400 μmol m-2 s-1), photoperiod (12-24 h) and gas-phase carbon dioxide (CO2) concentration (5-15% v/v) were evaluated on microalgae and associated bacterial growth, biochemical profile; with special emphasis on ω-3, ω-6 fatty acids, and vitamin B12. The optimal growth of C. vulgaris without CO2 supplementation was observed at 1.2 vvm, which was associated with higher algal productivity, chlorophyll, vitamin B12 content, and bacterial load along with 72% of nitrate removal. The higher light intensity (400 μmol m-2 s-1) and photoperiod (240) increased biomass productivity and ω-3 fatty acid content (in lipid) up to 2-3 fold. The elevated levels of gas-phase CO2 concentration (15% v/v) enhanced EPA content up to 7% and biomass productivity up to 171 mg L-1 day-1. However, the increase in CO2 concentration lowered vitamin B12 content (up to 30%) and bacterial load (2-3 log). Also, all the cultivation conditions favoured desirable ω-6/ω-3 ratio(in the range of 1-2). © Association of Food Scientists & Technologists (India) 2019.The influence of storage practices on physicochemical and microbial changes in crude palm oil (CPO) from milling points in Ile-Ife, Nigeria were investigated. Freshly milled CPO samples were collected from four traditional milling points, dispensed in 150 mL portions in sterile bottles and stored under two different conditions (sunlight reflection and in the dark, both at room temperature) for 4 months. Samples were obtained periodically during the storage period for microbiological and physicochemical analysis following established methods. The aerobic mesophilic (2.16 × 106 cfu/mL) and Enteri