https://www.selleckchem.com/ Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to investigate this through a series of experiments into how humans react to affective musical stimuli and how physiological and neurological signals recorded from those participants change in accordance with self-reported changes in affect. In this paper, the datasets recorded over the course of this project are presented, including details of the musical stimuli, participant reports of their felt changes in affective states as they listened to the music, and concomitant recordings of physiological and neurological activity. We also include non-identifying meta data on our participant populations for purposes of further exploratory analysis. This data provides a large and valuable novel resource for researchers investigating emotion, music, and how they affect our neural and physiological activity.Larvae of O. fultoni (Keroplatidae Keroplatinae), which occur along river banks in the Appalachian Mountains in Eastern United States, produce the bluest bioluminescence among insects from translucent areas associated to black bodies, which are located mainly in the anterior and posterior parts of the body. Although closely related to Arachnocampa spp (Keroplatidae Arachnocampininae), O.fultoni has a morphologically and biochemically distinct bioluminescent system which evolved independently, requiring a luciferase enzyme, a luciferin, a substrate binding fraction (SBF) that releases luciferin in the presence of mild reducing agents, molecular oxygen, and no additional cofactors. Similarly, the closely related Neoceroplatus spp, shares the same kind of luciferin-luciferase system of Orfelia fultoni. However, the molecular properties, identities and functions of luciferases, SBF and luciferin of Orfelia fultoni and other luminescent members of the Keroplatinae subfamily still