https://www.selleckchem.com/products/i-191.html mTOR (mammalian target of rapamycin) is a catalytic subunit composed of two multi-protein complexes that indicate mTORC1, mTORC2. It plays a crucial role in various fundamental cell processes like cell proliferation, metabolism, survival, cell growth, etc. Various first line mTOR inhibitors such as Rapamycin, Temsirolimus, Everolimus, Ridaforolimus, Umirolimus, Zotarolimus have been used popularly. Whereas, several mTOR inhibitors such as Gedatolisib (PF-05212384) are under phase 2 clinical trials studies for the treatment of triple-negative breast cancer. The mTOR inhibitors bearing heterocyclic moieties such as quinazoline, thiophene, morpholine, imidazole, pyrazine, furan, quinoline are under investigation against various cancer cell lines (U87MG, PC-3, MCF-7, A549, MDA-231). In this review, we summarized updated research related to mTOR inhibitors, their structure-activity relationship which may help scientists for the development of potent inhibitors against cancer. Angiogenesis occurs during various physiological or pathological processes such as wound healing and tumor growth. Differentiation of vascular endothelial cells into tip cells and stalk cells initiates formation of new blood vessels. Tip cells and stalk cells are endothelial cells with different biological characteristics and functions. The aim of this study was to determine the mechanisms of angiogenesis by exploring differences in gene expression of tip cells and stalk cells. Raw data were retrieved from NCBI Gene Expression Omnibus (GSE19284). Data were reanalyzed using bioinformatics methods that employ robust statistical methods, including identification of differentially expressed genes (DEGs) between stalk and tip cells, weighted gene correlation network analysis (WGCNA), gene ontology and pathway enrichment analysis using DAVID tools, integration of protein-protein interaction (PPI) networks and screening of hub genes. DEGs of stalk and tip cel