import numpy as np # X = (hours studying, hours sleeping), y = score on test xAll = np.array(([2, 9], [1, 5], [3, 6], [5, 10]), dtype=float) # input data y = np.array(([92], [86], [89]), dtype=float) # output # scale units xAll = xAll/np.amax(xAll, axis=0) # scaling input data y = y/100 # scaling output data (max test score is 100) # split data X = np.split(xAll, [3])[0] # training data xPredicted = np.split(xAll, [3])[1] # testing data y = np.array(([92], [86], [89]), dtype=float) y = y/100 # max test score is 100 class Neural_Network(object): def __init__(self): #parameters self.inputSize = 2 self.outputSize = 1 self.hiddenSize = 3 #weights self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # (3x2) weight matrix from input to hidden layer self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # (3x1) weight matrix from hidden to output layer def forward(self, X): #forward propagation through our network self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights self.z2 = self.sigmoid(self.z) # activation function self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): # activation function return 1/(1+np.exp(-s)) def sigmoidPrime(self, s): #derivative of sigmoid return (s) * (1 - (s)) def backward(self, X, y, o): # backward propagate through the network self.o_error = y - o # error in output self.o_delta = self.o_error*self.sigmoidPrime(o) # applying derivative of sigmoid to error self.z2_error = self.o_delta.dot(self.W2.T) # z2 error: how much our hidden layer weights contributed to output error self.z2_delta = self.z2_error*self.sigmoidPrime(self.z2) # applying derivative of sigmoid to z2 error self.W1 += X.T.dot(self.z2_delta) # adjusting first set (input --> hidden) weights self.W2 += self.z2.T.dot(self.o_delta) # adjusting second set (hidden --> output) weights def train(self, X, y): o = self.forward(X) self.backward(X, y, o) def saveWeights(self): np.savetxt("w1.txt", self.W1, fmt="%s") np.savetxt("w2.txt", self.W2, fmt="%s") def predict(self): print ("Predicted data based on trained weights: ") print ("Input (scaled): \n" + str(xPredicted)) print ("Output: \n" + str(self.forward(xPredicted))) NN = Neural_Network() for i in range(1000): # trains the NN 1,000 times print ("# " + str(i) + "\n") print ("Input (scaled): \n" + str(X)) print ("Actual Output: \n" + str(y)) print ("Predicted Output: \n" + str(NN.forward(X))) print ("Loss: \n" + str(np.mean(np.square(y - NN.forward(X))))) # mean sum squared loss print ("\n") NN.train(X, y) NN.saveWeights() NN.predict()