Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/rp-102124.html Increasing global concern has been raised about the expansion of hypoxia in coastal waters and its potential to impact benthic ecosystems. Upwelling areas offer opportunities to study the effects of hypoxia on benthic communities under natural conditions. We used a biological trait-based approach and estimated functional diversity indices to assess macrobenthic community functioning along a depth gradient associated with naturally increasing hypoxia and concentrations of organic matter in the upwelling zone of northern Chile (South-East Pacific) over two years. Our results highlighted the increasing dominance of opportunistic biological traits associated with hypoxia and high organic matter content. Habitat filtering was the main process affecting the studied communities. Functional diversity patterns were persistent overtime despite the occurrence of a pulse of oxygenation. This study contributes to our understanding of how natural hypoxia impacts macrobenthic communities, providing useful information in the context of increasing eutrophication due to human influence on coastal areas.This study aimed to investigate the toxicity of innovative antifouling nanostructured biocides DCOIT and silver associated to silica nanocapsules (SiNC) on the tropical microcrustacean Mysidopsis juniae. The toxicity of the tested compounds can be summarized as follows (acute tests) DCOIT > SiNC-Ag > SiNC-DCOIT > SiNC-DCOIT-Ag > SiNC > Ag; (chronic tests) SiNC-Ag > SiNC-DCOIT-Ag > DCOIT > Ag > SiNC, although it was not possible to determine the chronic toxicity of SiNC-DCOIT. In general, our data demonstrated that mysids were more sensitive than most temperate species, and it was possible to conclude that the combination SiNC-DCOIT-Ag showed less acute toxicity in comparison to the isolated active compounds, reinforcing data obtained for species from temperate environments on the potential use of nanomaterial to reduce toxicity to non
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत