Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/4-aminobutyric-acid.html Objective We aimed to develop a machine learning algorithm to screen for depression and assess severity based on data from wearable devices. Methods We used a wearable device that calculates steps, energy expenditure, body movement, sleep time, heart rate, skin temperature, and ultraviolet light exposure. Depressed patients and healthy volunteers wore the device continuously for the study period. The modalities were compared hourly between patients and healthy volunteers. XGBoost was used to build machine learning models and 10-fold cross-validation was applied for the validation. Results Forty-five depressed patients and 41 healthy controls participated, creating a combined 5,250 days' worth of data. Heart rate, steps, and sleep were significantly different between patients and healthy volunteers in some comparisons. Similar differences were also observed longitudinally when patients' symptoms improved. Based on seven days' data, the model identified symptomatic patients with 0.76 accuracy and predicted Hamilton Depression Rating Scale-17 scores with a 0.61 correlation coefficient. Skin temperature, sleep time-related features, and the correlation of those modalities were the most significant features in machine learning. Limitations The small number of subjects who participated in this study may have weakened the statistical significance of the study. There are differences in the demographic data among groups although we performed a correction for multiple comparisons. Validation in independent datasets was not performed, although 10-fold cross validation with the internal data was conducted. Conclusion The results indicated that utilizing wearable devices and machine learning may be useful in identifying depression as well as assessing severity. © 2020 The Authors. Published by Elsevier Ltd.Biological evaluation of exopolysaccharides (EPS) produced by wild type and mutant Lactobacillus delbureckii (EPS
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत