Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/PLX-4720.html Heparin, as an anticoagulant drug, is almost entirely produced via isolation from mucosal tissues of different animals; therefore, it is it is crucial to maximize its recovery. Adsorption of heparin from this complex biological mixture needs a specialized and highly effective adsorbent that almost separates only heparin from the mixture. In this work, a series of spherical cross-linked polymer bead adsorbents were synthesized via inverse suspension polymerization of water soluble monomers in corn oil, a benign solvent, and their performance for heparin adsorption from a biological sample of porcine mucosa was evaluated. To tune the performance and swelling of the resins, we varied the molar ratio of the monomer(s) to the cross-linker as well as the molar ratio of the monomers. The results of heparin recovery from biological porcine mucosa show that our optimized resin can outperform the commercially available resin in terms of adsorption efficiency of up to 18%. The adsorbed heparin was eluted, isolated, and its anticoagulant potency measured using the standard sheep plasma clotting assay. The isolated heparin samples were also analyzed by 1H NMR spectroscopy to check the possible impurities, and the results show the presence of chondroitin sulfate and dermatan sulfate, as is the case for the heparin eluted from the commercial resin. Furthermore, the effects of some experimental variables including the adsorbent dosage, pH, time, and recycling on heparin adsorption were studied, and the results show that these resins can be used for efficient recovery of heparin.The main impetus of vascular tissue engineering is clinical translation, but an equally appealing and impactful use of engineered vascular tissues is as preclinical testing platforms for studying vascular disease and developing therapeutic drugs and understanding of physiologically relevant vascular biology. Developing model engineered tissues will aid in na
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत