Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tiplaxtinin-pai-039.html Hospitalized patients with hyperkalemia are heterogeneous, and cluster approaches may identify specific homogenous groups. This study aimed to cluster patients with hyperkalemia on admission using unsupervised machine learning consensus clustering approach, and to compare characteristics and outcomes among these distinct clusters. Consensus cluster analysis was performed in 5,133 hospitalized adult patients with admission hyperkalemia, based on available clinical and laboratory data. The standardized mean difference was used to identify each cluster's key clinical features. The association of hyperkalemia clusters with hospital and one-year mortality was assessed using logistic and Cox proportional hazard regression. Three distinct clusters of hyperkalemia patients were identified using consensus cluster analysis 1,661 (32%) in cluster 1, 2,455 (48%) in cluster 2, and 1,017 (20%) in cluster 3. Cluster 1 was mainly characterized by older age, higher serum chloride, and acute kidney injury (AKI), but lower estimated glomerular filtration rate (eGFR), serum bicarbonate and hemoglobin. Cluster 2 was mainly characterized by higher eGFR, serum bicarbonate, and hemoglobin, but lower comorbidity burden, serum potassium, and AKI. Cluster 3 was mainly characterized by higher comorbidity burden, particularly diabetes, and end-stage kidney disease, AKI, serum potassium, anion gap, but lower eGFR, serum sodium, chloride, and bicarbonate. Hospital and one-year mortality risk was significantly different among the three identified clusters, with highest mortality in cluster 3, followed by cluster 1, and then cluster 2. In a heterogeneous cohort of hyperkalemia patients, three distinct clusters were identified using unsupervised machine learning. These three clusters had different clinical characteristics and outcomes. In a heterogeneous cohort of hyperkalemia patients, three distinct clusters were identified using unsupe
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत