Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/frax597.html In this paper, novel rapid cancer imaging techniques using activatable fluorescent probes are showcased, whose fluorescence characteristics are significantly altered to distinguish between cancer sites, which was developed by using unique probe precision design methods established by the authors. The strategy is to develop probes that target enzymes whose activity has been reported to be enhanced in cancer sites, or to find the most suitable probes from a group of developed probes by screening using actual clinical specimens. Several medical technologies have been developed that enable selective detection of cancer sites within minutes by simply spraying the probes on suspected cancer sites. In addition, it has recently become clear that simultaneous imaging of multiple target enzyme activities can not only visualize the lesion site but also distinguish between malignant and benign lesions. It is highly expected that the day will soon come when surgeons will be able to clearly determine the cancer site to be treated and perform precise endoscopic or open-stomach surgery.Fluorescence imaging is a very useful method for visualizing molecules and cells, but when tissues are measured", decrease in resolution due to increased scattering and absorption of light in proportion to tissue thickness (problem 1)" and "decrease in signal to noise(S/N)ratio of positive signal due to tissue autofluorescence(problem 2)"are problems to be solved. In this paper, to develop a technology to improve the analysis accuracy of drug efficacy mechanisms in preclinical trial of drug discovery, we performed development of a supporting technology for drug discovery of antibody drug conjugates by imaging living tumor tissues, while solving problem 1. This technology is expected to lead to an improvement in the success rate of clinical trials. Next, to develop a diagnostic method to predict the response to neoadjuvant chemotherapy with antibody dr
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत