Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/prgl493.html Sensors based on fluorogenic RNA aptamers have emerged in recent years. These sensors have been used for in vitro and intracellular detection of a broad range of biological and medical targets. However, the potential application of fluorogenic RNA-based sensors for point-of-care testing is still little studied. Here, we report a paper substrate-based portable fluorogenic RNA sensor system. Target detection can be simply performed by rehydration of RNA sensor-embedded filter papers. This affordable sensor system can be used for the selective, sensitive, and rapid detection of different target analytes, such as antibiotics and cellular signaling molecules. We believe that these paper-based fluorogenic RNA sensors show great potential for point-of-care testing of a wide range of targets from small molecules, nucleic acids, proteins, to various pathogens.A rapid analytical procedure is proposed for determining two antimicrobial onion organosulfur compounds, propyl disulfide (PDS) and propyl propane thiosulfonate (PTSO), in animal feed. The use of PTSO as a natural ingredient in animal feed is allowed due to its antimicrobial activity against pathogenic organisms. Two analytical methodologies using gas chromatography coupled to mass spectrometry (GC-MS) are compared. After the extraction of the compounds from animal feed with acetonitrile, dispersive solid phase extraction (DSPE) as a cleaning stage with C18, or dispersive liquid-liquid microextraction (DLLME), using 100 μL of CHCl3, was tried. Both the methods were validated using a pig feed sample and the best results were achieved by DLLME. This technique provided cleaner extracts, five-times greater linear ranges and lower detection limits than simple cleaning due to the enrichment factor achieved. The relative standard deviation decreased from 22% with DSPE to 13% with DLLME. The usefulness of the DLLME-GC-MS methodology was tested by analysing 10 different samples o
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत