Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ A detailed analysis of poloidal mode structures in the SFEMaNS code indicates that MRI, rather than Ekman circulation or Rayleigh instability, dominates the fluid behavior in the region where MRI is expected.In this paper, the rotational part of the disturbance flow field caused by viscous Rayleigh-Taylor instability (RTI) at the cylindrical interface is considered, and the most unstable mode is revealed to be three-dimensional for interfaces of small radii R. With an increase in R, the azimuthal wave number of the most unstable mode increases step by step, and the corresponding axial wave number increases as well at each step of the azimuthal wave number. When the amplitude of the wave-number vector is much larger or much smaller than 1/R, the cylindrical RTI is close to the semi-infinite planar viscous RTI limit or the finite-thickness creeping-flow RTI limit, respectively. The effect of the viscosity ratio is double-edged; it may enhance or suppress the cylindrical RTI, depending on R and the amplitude range of the wave-number vector.We examine directional locking effects in an assembly of disks driven through a square array of obstacles as the angle of drive rotates from 0^∘ to 90^∘. For increasing disk densities, the system exhibits a series of different dynamic patterns along certain locking directions, including one-dimensional or multiple-row chain phases and density-modulated phases. For nonlocking driving directions, the disks form disordered patterns or clusters. When the obstacles are small or far apart, a large number of locking phases appear; however, as the number of disks increases, the number of possible locking phases drops due to the increasing frequency of collisions between the disks and obstacles. For dense arrays or large obstacles, we find an increased clogging effect in which immobile and moving disks coexist.Nonlinear dispersion relation for the finite-amplitude dust acoustic modes is obtained taking into accoun
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत