Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/atezolizumab.html More than 99% of NH4+-N and 81% - 85% of total nitrogen were stably removed, with anammox bacteria contributing to more than 96% of total nitrogen removal. Anammox bacteria were efficiently enriched to the highest level among the key nitrogen-converting microbial groups, both in terms of abundance (8.17%) and nitrogen-conversion capacity, while ammonium oxidizing bacteria were well controlled to provide sufficient ammonium-oxidizing capacity. Nitrite oxidizing bacteria were maintained stable (relative abundance of 1.08%-1.88%) and their activity was effectively suppressed. This study provided a novel technology, SPAN, to precisely control oxygen input in PN-A system, and proved that SPAN was effective and reliable in achieving long-term high-efficiency nitrogen removal.River algal blooms have become a challenging environmental problem worldwide due to strong interference of human activities and megaprojects (e.g., big dams and large-scale water transfer projects). Previous studies on algal blooms were mainly focused on relatively static water bodies (i.e., lakes and reservoirs), but less on the large rivers. As the largest tributary of the Yangtze River of China and the main freshwater source of the South-to-North Water Diversion Project (SNWDP), the Han River has experienced frequent algal blooms in recent decades. Here we investigated the algal blooms during a decade (2003-2014) in the Han River by two gradient boosting machine (GBM) models with k-fold cross validation, which used explanatory variables from current 10-day (GBMc model) or previous 10-day period (GBMp model). Our results advocate the use of GBMp due to its higher accuracy (median Kappa = 0.9) and practical predictability (using antecedent observations) compared to GBMc. We also revealed that the algal blooms in the Han River were significantly modulated by antecedent water levels in the Han River and the Yangtze River and water level variation i
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत