Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/CI-1040-(PD184352).html Fetal heart rate monitoring using the abdominal electrocardiograph (ECG) is an important topic for the diagnosis of heart defects. Many studies on fetal heart rate detection have been presented, however, their accuracy is still unsatisfactory. That is because the fetal ECG waveform is contaminated by maternal ECG interference, muscle contractions, and motion artifacts. One of the conventional methods is to detect the R-peaks from the integrated power of the frequency corresponding to the fetal heartbeats. However, the detection accuracy of the R-peaks is not enough. In this paper, we propose a method to generate the candidates of R-peaks using the first derivative of the signal and to pick up the estimated heartbeats by a multiple weighting function. The proposed multiple weighting function is designed by the Gaussian distribution, of which parameters are set from a grid search with the goal of minimizing the standard deviation of RR intervals (neighboring R-peaks intervals). The validation for the proposed framework has been evaluated on real-world data, which got the better accuracy than the conventional method that detects R-peaks from the integrated power and uses the weighting function produced by a fixed parameter of Gaussian distribution [12]. The averaged absolute error (AAE) which compares the estimated fetal heart rate and the reference fetal heart rate has been decreased by 17.528 bpm.Emotion calibration is measured by the valence and arousal scales and the ideal center is used to directly divide valence arousal into high scores and low scores. This division method has a big classification and labeling defect, and the influence of emotion stimulation material on the subjects cannot be accurately measured. To address this problem, this paper proposes an EEG emotion recognition algorithm (DW-FBCSP Distance Weighted Filter Bank Common Spatial Pattern) based on scale distance weighted optimization t
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत