Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bardoxolone.html In detail, the photocatalytic degradation of Rhodamine B (RhB) activated by visible light using 15% SnO2/Bi2S3-Bi25 shows the efficiency of 80.8%, which is superior compared to that of pure Bi2S3 (29.4%) and SnO2 (0.1%). The SnO2/Bi2S3-Bi25 composite photocatalyst also presents an excellent photostability and easy recovery from dye for recycling. The trapping test revealed that the photogenerated holes play a crucial factor during the photocatalytic process, whereas superoxide radicals are also formed but not involved in the photocatalytic process. Successful fabrication of SnO2/Bi2S3-Bi25 composite photocatalysts via a straightforward method with drastically enhanced photocatalytic performance under visible light activation would be useful for practical applications.Effectively reducing the concentration of CO2 in ambient air is essential to mitigate global warming. Existing carbon capture and storage technology can only slow down the carbon emissions of large point sources but cannot treat the already accumulated CO2 in the environment. Herein, we demonstrated a simple direct CO2 capture method from air via reactive crystallization with a new trichelating iminoguanidine ligand (BTIG). It could strongly bind CO2 to form insoluble carbonate crystals that could be easily isolated. In the crystal, CO2 was transformed to CO32- and trapped in a dense hydrogen bonding network in terms of carbonate-water clusters. This capture process was reversible, and the BTIG ligand could be regenerated by heating the BTIG-CO2 crystal at a mild temperature, which was much lower than the decomposition temperature of CaCO3 (∼900 °C). Thermodynamic and kinetics analyses indicate that the crystallization process was exothermic with an enthalpy of -292 kJ/mol, and the decomposition energy consumption was 169 kJ per mol CO2. In addition, BTIG could also be employed for CO2 capture from flue gas with a capacity of 1.46 mol/mol, which was
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत