Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/iu1.html .This study investigated the influence of salinity on pollutant removal and bacterial community within a partially saturated vertical flow constructed wetland (PS-VFCW). High removal rates of NH4+-N (88.29 ± 4.97-100 ± 0%), total inorganic nitrogen (TIN) (50.00 ± 7.21-62.81 ± 7.21%) and COD (91.08 ± 2.66-100 ± 0%) were achieved at 0.4-2.4% salinity levels. The removal of ammonia, TIN and organic matter occurred mainly in unsaturated zone. Salt-adaptable microbes became the dominant bacteria with salinity elevated. The proportion of ammonia-oxidizing bacteria (AOB) in the 0-5 cm depth layer (unsaturated zone) decreased obviously as the salinity increased to 2.4%. Nitrite-oxidizing bacteria (NOB) in the 0-5 cm depth layer showed a decreasing trend with elevated salinity. Denitrifying bacteria (DNB) in the 0-5 cm depth layer maintained high abundance (27.70-53.60%) at 0.4-2.4% salinity levels. At 2.4% salinity, AOB, NOB and DNB were observed in the unsaturated zones and saturated zones, and showed higher abundance in the unsaturated zone.The presence of (nano)microplastics in domestic wastewater and their subsequent release to the aquatic environment via the discharge of treated sewage has raised significant concerns. Previous studies have also identified their excessive accumulation in sewage sludge. Anaerobic digestion is one of the most used sludge stabilization methods in wastewater treatment plants. Therefore, understanding the potential effects of (nano)microplastics on anaerobic digestion has been receiving increasing attention from researchers. This article provides a comprehensive review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Notably, this review covers mechanisms of inhibition/enhancement of anaerobic digestion by (nano)microplastics and their potential impacts on biochemical pathways, key enzymes, functional genes, and microbial communities investigated to date. Moreov
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत