Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/slf1081851-hydrochloride.html This paper presents a detailed-balance analysis required for the achievement of a high-efficiency spectral selective STPV system utilizing thermodynamic and optical modeling approaches. Key parameters affecting the design and optimization of spectrally selective surfaces that are essential for high-efficiency STPV applications are investigated. A complete GaSb-based planar STPV system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter was fabricated and evaluated. The micro-textured absorber features more than 90% absorbance at visible and near-infrared wavelengths. The selective emitter, consisting of two nanolayer coatings of silicon nitride (Si3N4) and a layer of W in between, exhibits high spectral emissivity at wavelengths matching the spectral response of the GaSb cells. The performance of the STPV system was evaluated using a high-power laser diode as a simulated source of concentrated incident radiation. When operated at 1670 K, an output power density of 1.75 W/cm2 and a system efficiency of 8.6% were recorded. This system efficiency is higher than those of previously reported experimental STPV systems. Optical and thermal losses that occurred at multiple stages of the energy transport process were modeled and quantified. Essential guidelines to mitigate these losses and further enhance the system performance are also provided.The phase-sensitive X-ray imaging technique based on the bilens interferometer is developed. The essence of the method consists of scanning a sample, which is set upstream of the bilens across the beam of one lens of the interferometer by recording changes in the interference pattern using a high-resolution image detector. The proposed approach allows acquiring the absolute value of a phase shift profile of the sample with a fairly high phase and spatial resolution. The possibilities of the imaging technique wer
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत