Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tbopp.html A systematic and multidisciplinary approach is required to advance lichen research and improve our understanding of the mechanisms responsible for the potent cytotoxic properties of lichenochemicals. More efforts need to focus on screening and discovery of new lichen-derived compounds with unique anticancer properties.Objective Ramp drivers have to merge into the through traffic in a limited time and space at interchange merging areas. Different merging decisions are made due to drivers' various perception abilities of potential danger, which might significantly increase the crash risk. Driving assistance technology (DA) is expected to be an effective way of mitigating the crash risk. Hence, this paper aims to contribute to the literature by designing a model strategy to predict the crash risk of merging drivers in order to enhance the merging assistance system for crash avoidance.Methods Unmanned aerial vehicle (UAV) was used to collect individual vehicle data to conduct traffic analysis at the microscopic level. A model strategy was proposed to predict the crash risk of merging vehicles which could make sure that ramp drivers are aware of potential risks in advance. Three models (i.e., binary logistic regression, multinomial logistic regression, and nested logit models) were developed and compared.Results Target-lane-related and merging-vehicle-related variables were found significant with crash risk, including the speed of the merging vehicle, the speed of lead/lag vehicle in the target lane, the type of lead/lag vehicle in the target lane. Different variables were found to be significant in the proposed models.Conclusions The results suggest that the nested logit model has the highest prediction accuracy. It is concluded that the merging speed, driving ability (i.e., lane-keeping instability), and the vehicle type in the target lane affect the crash risk. Finally, the implementation of the proposed prediction model
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत