Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cobimetinib-gdc-0973-rg7420.html Hemochromatosis is an iron overload disease, which lacks nutritional intervention strategies. This study explored the protective effect of quercetin on hemochromatosis and its possible mechanism through network pharmacology. We used Online Mendelian Inheritance in Man to screen the disease targets of hemochromatosis, and further constructed a potential protein interaction network through STITCH. The above-mentioned targets revealed by Gene enrichment analysis have played a significant role in ferroptosis, mineral absorption, basal cell carcinoma, and related signal pathways. Besides, the drug likeness of quercetin obtained by Comparative Toxicogenomics Database was evaluated by Traditional Chinese Medicine Systems Pharmacology, and potential drug targets identified by PharmMapper and similar compounds identified by PubChem were selected for further research. Moreover, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed the relationship between quercetin and glycosylation. Furthermore, we performed experiments to verify that the protective effect of quercetin on iron overload cells is to inhibit the production of reactive oxygen species, limit intracellular iron, and degrade glycosaminoglycans. Finally, iron-induced intracellular iron overload caused ferroptosis, and quercetin and fisetin were potential ferroptosis inhibitors. In conclusion, our study revealed the correlation between hemochromatosis and ferroptosis, provided the relationship between the target of quercetin and glycosylation, and verified that quercetin and its similar compounds interfere with iron overload related disease. Our research may provide novel insights for quercetin and its structurally similar compounds as a potential nutritional supplement for iron overload related diseases.Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dom
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत