Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/g140.html In conclusion, diclofenac modified the root development of A. thaliana via interfering with the activities of natural auxin. These results indicate that diclofenac could potentially act as an environmental contaminant disturbing the natural developmental processes of plants.Graphitic carbon nitride is considered as one of the promising photocatalysts for pollution elimination from wastewater. Manipulating the microstructure of carbon nitride remains a challengeable task, which is essential for improving light absorption, separating photogenerated carrier and creating reactive sites. Herein, a carbon vacancy modified hierarchical carbon nitride microrod (CN1.5) has been prepared templated from a melamine-NH2OH·HCl complex. The hierarchical microrods are demonstrated to be comprised of interconnected nanosheets with rich carbon vacancies, which endows it with high specific surface area, enhanced light utilization efficiency, available reactive sites, improved charge carrier separation and numerous mass-transport channels. The resultant photocatalyst CN1.5 exhibits an excellent photodegradation efficiency of 87.9% towards tetracycline under visible light irradiation. The remarkable apparent rate constant of 4.91 × 10-2 min-1 is 7.3 times higher than that of bulk CN. In addition, the degradation pathways are deduced base on the observation of degradation intermediates generating in the photocatalytic process. Mechanism investigation indicates that the major contribution for photodegradation is attributed to ·O2-, 1O2 and H2O2 species. This work provides new insights into advancing carbon nitride's microstructure to improve photocatalytic degradation performance for highly efficient antibiotic removal and environment remediation.In this study, Fenton-like chain reaction is constructed by coupling nanoscale tungsten powders (nW0) and peroxydisulfate (PDS). The nanoscale tungsten powders/peroxydisulfate (nW0/PDS) system exhibi
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत