Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/RO4929097.html After that, we get low dimensional embedding representations of drugdisease pairs by using topological features and singular value decomposition. Finally, a Random Forest classifier is trained to do the prediction. To train a more reasonable model, we select out some reliable negative samples based on the k-step neighbors relationships between drugs and diseases. Compared with some state-of-the-art methods, we use less information but achieve better or comparable performance. Meanwhile, our strategy for selecting reliable negative samples can improve the performances of these methods. Case studies have further shown the practicality of our method in discovering novel drug-disease associations.Due to technological advances the quality and availability of biological data has increased dramatically in the last decade. Analysing protein-protein interaction networks (PPINs) in an integrated way, together with subcellular compartment data, provides such biological context, helps to fill in the gaps between a single type of biological data and genes causing diseases and can identify novel genes related to disease. In this study, we present BCCGD, a method for integrating subcellular localization data with PPINs that detects breast cancer candidate genes in protein complexes. We achieve this by defining the significance of the compartment, constructing edge-weighted PPINs, finding protein complexes with a non-negative matrix factorization approach, generating disease-specific networks based on the known disease genes, prioritizing disease candidate genes with a WDC method. As a case study, we investigate the breast cancer but the techniques described here are applicable to other disorders. For the top genes scored by BCCGD approach, we utilize the literature retrieving method to test the correlations of them with the breast cancer. The results show that BCCGD discover some novel breast cancer candidate genes which are valu
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत