Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/m4205-idrx-42.html sajor-caju as a prebiotic in cases of hepatic steatosis and liver inflammation.Heterogeneous catalysts supported on metal-organic frameworks (MOFs), which possess uniform porosity and crystallinity, have attracted significant interest for recent years due to the ease of active-site characterization via X-ray diffraction and the subsequent relation of the active site structure to the catalytic activity. We report the syntheses, structures, and oxidation catalytic activities of single-ion iron catalysts incorporated into the zirconium MOF NU-1000. Single-ion iron catalysts with different counteranions were anchored onto the Zr node through postsynthetic solvothermal deposition. Crystallographic characterization of the resulting MOFs (NU-1000-Fe-Cl and NU-1000-Fe-NO3 ) revealed that, while both frameworks have similar Fe coordination, the distance between Fe and the Zr6 node differs significantly between the two. The product rate profiles of the two catalysts for vapor-phase cyclohexene epoxidation demonstrate different initial rates and product formations, likely originating from the different Fe-O distances.Enhanced thermodynamic stability is a fundamental characteristic of aromatic molecules, yet most previous studies of aromatic stabilization energy (ASE) have been limited to small rings with up to 18 π-electrons. Here we demonstrate that ASE can be detected experimentally in π-conjugated porphyrin nanorings with Hückel circuits of 76-108 π-electrons. This conclusion is supported by analyzing redox potentials to calculate the energy change for isodesmic reactions that convert an aromatic ring to an antiaromatic ring or vice versa. It is also supported by analyzing the energy barriers to conformational equilibria that disrupt aromaticity in the transition state. Both types of experiment indicate that cationic porphyrin nanorings display ASEs of 1-5 kJ mol-1. Density functional theory calculations reproduce the
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत