Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/kn-62.html Background Risk of hyperuricemia (HU) has been shown to be strongly associated with dietary factors. However, there is scarce evidence on prediction models incorporating dietary factors to estimate the risk of HU. Objective The aim of this study was to develop a prediction model to predict the risk of HU in Chinese adults based on dietary information. Design Our study was based on a cross-sectional survey, which recruited 1,488 community residents aged 18 to 60 years in Beijing from October 2010 to January 2011. The eligible participants were randomly divided into a training set (n 1 = 992) and a validation set (n 2 = 496) in the ratio of 21. We developed the prediction model in three stages. We first used a logistic regression model (LRM) based on the training set to select a set of dietary risk factors which were related to the risk of HU. Artificial neural network (ANN) was then used to construct the prediction model using the training set. Finally, we used receiver operating characteristic (ROC) curve ana in our study is successful and valuable. Conclusions This study suggests that the ANN model could be used to predict the risk of HU in Chinese adults. Further prospective studies are needed to improve the accuracy and to generalize the use of model. © 2020 Jie Zeng et al.INTRODUCTION Electronic cigarettes (e-cigarettes) have rapidly become the most commonly used tobacco product among youth in the United States. Exposure to advertising, peer use, and household use, increases the risk of current e-cigarette use; however, the influence of these factors may be dynamic across adolescence. The aim of this study is to examine the age-varying associations between e-cigarette use and peer use, household use, and exposure to e-cigarette commercials among alternative high school students in Southern California. METHODS Using data previously collected for a tobacco marketing study, we examine the age-varying associations of c
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत