Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/loxo-195.html Multi-junction solar cells allow to utilize sunlight more effectively than single junction solar cells. In this work, we present optical simulations of III-V-on-silicon solar cells with a metal grating at the back, which experimentally have reached more than 33% power conversion efficiency. First, we perform simulations with the finite element method and compare them with experimental data to validate our model. We find that accurately modeling the investigated geometrical structure is necessary for best agreement between simulation and experimental measurements. Then, we optimize the grating for maximized light trapping using a computationally efficient Bayesian optimization algorithm. The photo current density of the limiting silicon bottom cell is improved from 13.48 mA/cm2 for the experimental grating to 13.85 mA/cm2 for the optimized metal grating. Investigation of all geometrical optimization parameters of the grating (period, height,…) shows that the structure is most sensitive towards the period, a parameter highly controllable in manufacturing by inference lithography. The results show a pathway to exceed the current world record efficiency of the III-V-on-silicon solar cell technology.Light-in-flight (LIF) imaging is the measurement and reconstruction of light's path as it moves and interacts with objects. It is well known that relativistic effects can result in apparent velocities that differ significantly from the speed of light. However, less well known is that Rayleigh scattering and the effects of imaging optics can lead to observed intensities changing by several orders of magnitude along light's path. We develop a model that enables us to correct for all of these effects, thus we can accurately invert the observed data and reconstruct the true intensity-corrected optical path of a laser pulse as it travels in air. We demonstrate the validity of our model by observing the photon arrival time and inte
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत