Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ltgo-33.html Human activity recognition (HAR) has become an increasingly popular application of machine learning across a range of domains. Typically the HAR task that a machine learning algorithm is trained for requires separating multiple activities such as walking, running, sitting, and falling from each other. Despite a large body of work on multi-class HAR, and the well-known fact that the performance on a multi-class problem can be significantly affected by how it is decomposed into a set of binary problems, there has been little research into how the choice of multi-class decomposition method affects the performance of HAR systems. This paper presents the first empirical comparison of multi-class decomposition methods in a HAR context by estimating the performance of five machine learning algorithms when used in their multi-class formulation, with four popular multi-class decomposition methods, five expert hierarchies-nested dichotomies constructed from domain knowledge-or an ensemble of expert hierarchies on a 17-class HAR data-set which consists of features extracted from tri-axial accelerometer and gyroscope signals. We further compare performance on two binary classification problems, each based on the topmost dichotomy of an expert hierarchy. The results show that expert hierarchies can indeed compete with one-vs-all, both on the original multi-class problem and on a more general binary classification problem, such as that induced by an expert hierarchy's topmost dichotomy. Finally, we show that an ensemble of expert hierarchies performs better than one-vs-all and comparably to one-vs-one, despite being of lower time and space complexity, on the multi-class problem, and outperforms all other multi-class decomposition methods on the two dichotomous problems.The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), wh
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत