Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/lonafarnib-sch66336.html Most of the research findings have suggested the successful application of NTP and PAW for microbial inactivation and food preservation. Still, there are some research gaps identified and a complete analysis of the stability of plasma reactive species in food is still missing. By addressing these issues, along with the available research output in this field, it is possible that NTP can be successfully used as a food decontamination method in the near future.Listeria monocytogenes, in fresh and ready-to-eat produce such as whole fresh apples, is of concern as there is no "kill step" in their packing process that would eliminate the pathogenic bacteria. Recent listeriosis outbreaks revealed that insufficient cleaning and sanitation practices in fresh apple packing houses may lead to contamination of fruit with L. monocytogenes. This article discusses three fundamental aspects for ensuring microbiological safety of fresh apples protection of fresh apples from microbial contamination during the packing process, decontamination intervention techniques, and the challenges in removal of L. monocytogenes from fresh apples. Currently used and novel methods of fresh produce decontamination are discussed and evaluated on their usefulness for the apple packing process. Additionally, present regulatory requirements, possible routes of produce contamination, and bacteria attachment and survival mechanisms are described. Optimum methods for microbial decontamination of whole fresh apples are still to be determined. Critical aspects that should be considered in developing the interventions include apple morphology, conditions and scale of the packing process, and influence of the interventions on apple quality. Evaluation of the currently used and emerging decontamination methods indicated that the hurdle technology and rotating use of sanitizers to avoid development of bacterial biofilm resistance may give the best res
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत