Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/lf3.html hamstrings only could be better for children with mild crouch gait.Sufficient primary stability is one of the most important prerequisites for successful osseointegration of cementless implants. Bone grafts, densification and compaction methods have proven clinically successful, but the related effects and causes have not been systematically investigated. Postoperatively, the frictional properties of the bone-implant interface determine the amount of tolerable shear stress. Frictional properties of different implant surfaces have been widely studied. Less attention has been paid to the influence of host bone modifications. The purpose of this study was to investigate the influence of densification of cancellous bone with bone particles on the interface friction coefficient. Cancellous bone samples from femoral heads were densified with bone particles obtained during sample preparation. The densification was quantified using micro-Ct. Friction coefficients of the densified and paired native samples were determined. Densification increased the BV/TV in the first two millimeters of the bone samples by 10.5 ± 2.7% to 30.5 ± 2.7% (p less then 0.001). The static friction coefficient was increased by 10.5 ± 6.1% to 0.43 ± 0.03. The static friction coefficient increased with higher BV/TV of the bone interface, which is represented by the top 2 mm of the bone. The increase in contact area, intertrabecular anchorage and particle bracing could be responsible for the increase in friction. Optimization of particle shape and size based on the patient's individual bone microstructure could further increase frictional resistance. Bone densification has the potential to improve the primary stability of uncemented implants.Microbial electrosynthesis (MES) cells use renewable energy to convert carbon dioxide into valuable chemical products such as methane and acetate, but chemical production rates are low and pH changes can adversely impac
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत