Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/mk-0752.html Among the various methods for computing the T-matrix in electromagnetic and acoustic scattering problems is an iterative approach that has been shown to be particularly suited for particles with small-scale surface roughness. This method is based on an implicit T-matrix equation. However, the convergence properties of this method are not well understood. Here, a sufficient condition for the convergence of the iterative T-matrix algorithm is derived by applying the Banach fixed point theorem. The usefulness of the criterion is illustrated by applying it to predicting, as well as to systematically improving the convergence of the iterative method.This paper focuses on polarized radiative transfer in dispersed layers composed of densely packed optically soft particles while considering the effects of dependent scattering and particle agglomeration. The radiative properties of the particles for different agglomeration degrees are calculated using the Lorenz-Mie theory combined with the Percus-Yevick sticky hard sphere model, and the vector radiative transfer equation is solved by using the spectral method. The normalized Stokes reflection matrix elements of the layers for different particle sizes, particle volume fractions and layer thicknesses are discussed. The results show that the effects of multiple scattering, dependent scattering and particle agglomeration have different degrees of influence on the polarized reflection characteristics of the layers. Due to the inhibition effect of far-field interference interaction on particle scattering, the dependent scattering weakens the depolarization caused by multiple scattering. However, as the particles form agglomerations, the scattering coefficients of the particles obviously increase with the agglomeration degree, which will lead to the significant enhancement of the multiple scattering and depolarization.We propose a light transparency effect induced by coherent feedb
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत