Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/VX-765.html In this study, microparticles of bionanomaterials were obtained by polyvinylpyrrolidone, montmoril-lonite, and zinc oxide bionanosystems produced through solution intercalation technique combined with a spray-drying process, aiming for possible application as drug delivery systems. The final microparticles obtained were evaluated in terms of their production yield, which varies between 39.2% and 56.9%. Thermal analysis showed no major changes in Tg of the nanocomposites, compared to the pure PVP polymer. Scanning electron microscopy analysis revealed a pseudo-spherical shape and confirmed the micrometric size of the microparticles. Transmission electron microscopy analysis corroborated the embedding of montmorillonite and ZnO within the polymer phase. Nuclear magnetic resonance and X-rays diffraction were used to study the nanoparticles dispersion, indicating a predominant intercalated morphology. This study suggests that the applied methodology is suitable for the high yields synthesis of nanocomposites PVP based microparticles with uniform size and shape, which can be promising for the production of a new drug delivery system.A facile and peculiar synthesis strategy is designed for the fabrication of transparent superhydrophobic surfaces on simple glass substrate. The synthesis methodology comprises of two steps of hydrothermal treatment of cleaned glass substrate with ultrapure water as a solvent followed by coating of 1H, 1H, 2H, 2H-perflourooctyltriethoxysilane (POTS) also by hydrothermal treatment in hydrothermal reactor. The hydrothermal treatment of glass substrate lead to the nanostructured surface morphology consisting of nanofibers and a blend of nanofibers/nanoflakes. Aforesaid nanostructured surface morphology upon hydrophobic coating resulted in superhydrophobic properties, increasing the water contact angle (WCA) from 92.0° to as high as 145.3°. Moreover, the developed synthesis approach also resulted i
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत