Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gsk2795039.html Video object segmentation (VOS) is one of the most fundamental tasks for numerous sequent video applications. The crucial issue of online VOS is the drifting of segmenter when incrementally updated on continuous video frames under unconfident supervision constraints. In this work, we propose a self-teaching VOS (ST-VOS) method to make segmenter to learn online adaptation confidently as much as possible. In the segmenter learning at each time slice, the segment hypothesis and segmenter update are enclosed into a self-looping optimization circle such that they can be mutually improved for each other. To reduce error accumulation of the self-looping process, we specifically introduce a metalearning strategy to learn how to do this optimization within only a few iteration steps. To this end, the learning rates of segmenter are adaptively derived through metaoptimization in the channel space of convolutional kernels. Furthermore, to better launch the self-looping process, we calculate an initial mask map through part detectors and motion flow to well-establish a foundation for subsequent refinement, which could result in the robustness of the segmenter update. Extensive experiments demonstrate that this ST idea can boost the performance of baselines, and in the meantime, our ST-VOS achieves encouraging performance on the DAVIS16, Youtube-objects, DAVIS17, and SegTrackV2 data sets, where, in particular, the accuracy of 75.7% in J-mean metric is obtained on the multi-instance DAVIS17 data set.Extracting genes involved in cancer lesions from gene expression data is critical for cancer research and drug development. the method of feature selection has attracted much attention in the field of bioinformatics. Principal Component Analysis (PCA) is a widely used method for learning low-dimensional representation. Some variants of PCA have been proposed to improve the robustness and sparsity of the algorithm. However, the exist
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत