Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/nd-630.html Epigenetic modifications play a fundamental role in the regulation of gene expression and cell fate. During the development of cancer, epigenetic modifications appear that favor cell proliferation and migration, but at the same time prevent differentiation and apoptosis, among other processes. KDM6B is a histone demethylase that specifically removes methyl groups from H3K27me3, thus allowing re-expression of its target genes. It is currently known that KDM6B can act as both a tumor suppressor and an oncogene depending on the cellular context. Therefore, in this work we summarize the current knowledge of the role that KDM6B plays in different oncological contexts, and we try to orient it towards its clinical application.Diabetes mellitus (DM) is a global health burden, affecting about 463 million of the adult population worldwide. Approximately 94% of diabetic male individuals develop varying degrees of testicular disorders (TDs), which usually result in hypogonadism, hypotestosteronemia and defective spermatogenesis and steroidogenesis. Short chain fatty acids (SCFAs) have shown potential benefits in metabolic health. However, its effect on TD associated with DM is not clear. Howbeit, the present study investigated the hypothesis that SCFAs, acetate would ameliorate TD accompanying DM, possibly by suppressing proprotein convertase subtilisin/kexin type 9 (PCSK9). Male Wistar rats (210-240 g) were allotted into groups (n = 6/group) control (vehicle; po), DM with/without 200 mg/kg (po) of sodium acetate (SAc). Diabetes was induced by streptozotocin 65 mg/kg (iv) after a dose of nicotinamide (110 mg/kg). Semen/biochemical and histological analyses were performed with appropriate methods. In addition to hyperglycemia, hyperinsulinemia and reduced insulin sensitivity, DM led to increased serum and testicular triglyceride or total cholesterol/high-density lipoprotein cholesterol ratio, low-density lipoprotein cholesterol, m
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत