Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/blu-285.html Animal models of noise-induced hearing loss (NIHL) show a dramatic mismatch between cochlear characteristic frequency (CF, based on place of innervation) and the dominant response frequency in single auditory-nerve-fiber responses to broadband sounds (i.e., distorted tonotopy, DT). This noise trauma effect is associated with decreased frequency-tuning-curve (FTC) tip-to-tail ratio, which results from decreased tip sensitivity and enhanced tail sensitivity. Notably, DT is more severe for noise trauma than for metabolic (e.g., age-related) losses of comparable degree, suggesting that individual differences in DT may contribute to speech intelligibility differences in patients with similar audiograms. Although DT has implications for many neural-coding theories for real-world sounds, it has primarily been explored in single-neuron studies that are not viable with humans. Thus, there are no noninvasive measures to detect DT. Here, frequency following responses (FFRs) to a conversational speech sentence were recorded in anesthetized male chinchillas with either normal hearing or NIHL. Tonotopic sources of FFR envelope and temporal fine structure (TFS) were evaluated in normal-hearing chinchillas. Results suggest that FFR envelope primarily reflects activity from high-frequency neurons, whereas FFR-TFS receives broad tonotopic contributions. Representation of low- and high-frequency speech power in FFRs was also assessed. FFRs in hearing-impaired animals were dominated by low-frequency stimulus power, consistent with oversensitivity of high-frequency neurons to low-frequency power. These results suggest that DT can be diagnosed noninvasively. A normalized DT metric computed from speech FFRs provides a potential diagnostic tool to test for DT in humans. A sensitive noninvasive DT metric could be used to evaluate perceptual consequences of DT and to optimize hearing-aid amplification strategies to improve tonotopic coding fo
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत