Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/e7766-diammonium-salt.html Aims To investigate the efficacy of a bi-modality deep convolutional neural network (DCNN) framework to categorise age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) from colour fundus images and optical coherence tomography (OCT) images. Methods A retrospective cross-sectional study was proposed of patients with AMD or PCV who came to Peking Union Medical College Hospital. Diagnoses of all patients were confirmed by two retinal experts based on diagnostic gold standard for AMD and PCV. Patients with concurrent retinal vascular diseases were excluded. Colour fundus images and spectral domain OCT images were taken from dilated eyes of patients and healthy controls, and anonymised. All images were pre-labelled into normal, dry or wet AMD or PCV. ResNet-50 models were used as the backbone and alternate machine learning models including random forest classifiers were constructed for further comparison. For human-machine comparison, the same testing data set was diagnosed by three retinal experts independently. All images from the same participant were presented only within a single partition subset. Results On a test set of 143 fundus and OCT image pairs from 80 eyes (20 eyes per-group), the bi-modal DCNN demonstrated the best performance, with accuracy 87.4%, sensitivity 88.8% and specificity 95.6%, and a perfect agreement with diagnostic gold standard (Cohen's κ 0.828), exceeds slightly over the best expert (Human1, Cohen's κ 0.810). For recognising PCV, the model outperformed the best expert as well. Conclusion A bi-modal DCNN for automated classification of AMD and PCV is accurate and promising in the realm of public health.Background/aims To better understand seasonal and weekday intraocular pressure (IOP) variations, long-term daily IOP measurements were assessed in patients with glaucoma using an intraocular telemetric sensor. Methods This prospective, open-label, mult
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत