Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/trilaciclib.html Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by irregular menstrual cycles, hyperandrogenism and subfertility. Due to its complex manifestation, the pathogenic mechanism of PCOS is not well defined. Cumulative effect of altered genetic and epigenetic factors along with environmental factors may play a role in the manifestation of PCOS leading to systemic malfunction. With failure of genome-wide association study (GWAS) and other studies performed on nuclear genome to provide any clue for precise mechanism of PCOS pathogenesis, attention has been diverted to mitochondria. Mitochondrion plays an important role in cellular metabolic functions and is linked to Insulin Resistance (IR). Recently, increasing reports suggest that mitochondrial dysfunction may be a contributing factor in the pathogenesis of PCOS. Hence, in this review, we have discussed mitochondrial biology in brief and emphasizes on genetic and epigenetic aspects of mitochondrial dysfunction studied in PCOS women and PCOS-like animal models. We also highlight underlying mechanism behind mitochondrial dysfunction contributing to PCOS and its related complications such as obesity, diabetes, cardiovascular diseases, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and cancer. Furthermore, contrasting remarks against involvement of mitochondrial dysfunction in PCOS pathophysiology have also been presented. This review enhances our understanding in relation to mitochondrial dysfunction in the etiology of PCOS and stimulates further research to explore a clear link between mitochondrial dysfunction and PCOS pathogenesis and progression. Understanding pathogenic mechanisms underlying PCOS will open new windows to develop promising therapeutic strategies against PCOS. V.Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत